Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas

Identifieur interne : 003547 ( Main/Exploration ); précédent : 003546; suivant : 003548

Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas

Auteurs : S. Ghiorso [États-Unis] ; O. Sack [États-Unis]

Source :

RBID : ISTEX:65A65FF152F850B17F9105E0E71D123001E0A6B8

Abstract

Abstract: A new thermodynamic formulation of the Fe−Ti oxide geothermometer/oxygen barometer is developed. The method is based upon recently calibrated models for spinel solid solutions in the quinary system (Fe2+, Mg)(Al,Fe3+,Cr)2O4−(Fe2+, Mg)2TiO4 by Sack and Ghiorso, and rhombohedral oxides in the quaternary system (Fe2+,Mg,Mn)TiO3−Fe2O3 (this paper). The formulation is internally consistent with thermodynamic models for (Fe2+,Mg)-olivine and -orthopyroxene solid solutions and end-member thermodynamic properties tabulated by Berman. The constituent expressions account for compositional and temperature dependent cation ordering and reproduce miscibility gap features in all of the component binaries. The calibration does not account for the excess Gibbs energy resulting from compositional and temperature dependent magnetic ordering in either phase. This limits application of the method to assemblages that equilibrated at temperatures above 600° C. Practical implementation of the proposed geothermometer/oxygen barometer requires minimal use of projection algorthms in accommodating compositions of naturally occurring phases. The new formulation is applied to the estimation of temperature and oxygen fugacity in a wide variety of intermediate to silicic volcanic rocks. In combination with previous work on olivine and orthopyroxene thermodynamics, equilibration pressures are computed for a subset of these volcanics that contain the assemblage quartz, oxides and either ferromagnesian silicate. The calculated log10 f O 2-T relations are reflected in coexisting ferromagnesian mineral assemblages. Volcanics with the lowest relative oxygen fugacity (Δlog10 f O 2) are characterized by the assemblage olivine-quartz, those with slightly higher Δ log10 f O 2 s, by the assemblage orthopyroxene-quartz. The sequence proceeds with the necessary phases biotite-feldspar, then hornblende-quartz-clinopyroxene, and finally at the highest Δ log10 f O 2 s, sphene-quartz-clinopyroxene. Quantitative analysis of these trends, utilizing thermodynamic data for the constituent phases, establishes that, in most cases, the T-log10 f O 2value computed from the oxides is consistent with the compositions of coexisting silicate phases, indicating that phenocryst equilibrium was achieved prior to eruption. There is, however, considerable evidence of oxide-silicate disequilibrium in samples collected from more slowly cooled domes and obsidians. In addition, T-log10 f O 2trends from volcanic rocks that contain biotite and orthopyroxene are interpreted to imply a condition of Fe2+−Mg exchange disequilibrium between orthopyroxene and coexisting ferromagnesian silicates and melt. It is suspected that many biotite-feldspar-quartz-orthopyroxene bearing low temperature volcanic rocks inherit orthopyroxene xenocrysts which crystallized earlier in the cooling history of the magma body.

Url:
DOI: 10.1007/BF00303452


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas</title>
<author>
<name sortKey="Ghiorso, S" sort="Ghiorso, S" uniqKey="Ghiorso S" first="S." last="Ghiorso">S. Ghiorso</name>
</author>
<author>
<name sortKey="Sack, O" sort="Sack, O" uniqKey="Sack O" first="O." last="Sack">O. Sack</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:65A65FF152F850B17F9105E0E71D123001E0A6B8</idno>
<date when="1991" year="1991">1991</date>
<idno type="doi">10.1007/BF00303452</idno>
<idno type="url">https://api.istex.fr/document/65A65FF152F850B17F9105E0E71D123001E0A6B8/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001362</idno>
<idno type="wicri:Area/Istex/Curation">001283</idno>
<idno type="wicri:Area/Istex/Checkpoint">002756</idno>
<idno type="wicri:doubleKey">0010-7999:1991:Ghiorso S:fe:ti:oxide</idno>
<idno type="wicri:Area/Main/Merge">003735</idno>
<idno type="wicri:Area/Main/Curation">003547</idno>
<idno type="wicri:Area/Main/Exploration">003547</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas</title>
<author>
<name sortKey="Ghiorso, S" sort="Ghiorso, S" uniqKey="Ghiorso S" first="S." last="Ghiorso">S. Ghiorso</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geological Sciences, AJ-20, University of Washington, 98195, Scattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sack, O" sort="Sack, O" uniqKey="Sack O" first="O." last="Sack">O. Sack</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Earth and Atmospheric Sciences, Purdue University, 47907, West Lafayette, IN</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Contributions to Mineralogy and Petrology</title>
<title level="j" type="abbrev">Contr. Mineral. and Petrol.</title>
<idno type="ISSN">0010-7999</idno>
<idno type="eISSN">1432-0967</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1991-10-01">1991-10-01</date>
<biblScope unit="volume">108</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="485">485</biblScope>
<biblScope unit="page" to="510">510</biblScope>
</imprint>
<idno type="ISSN">0010-7999</idno>
</series>
<idno type="istex">65A65FF152F850B17F9105E0E71D123001E0A6B8</idno>
<idno type="DOI">10.1007/BF00303452</idno>
<idno type="ArticleID">BF00303452</idno>
<idno type="ArticleID">Art8</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0010-7999</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A new thermodynamic formulation of the Fe−Ti oxide geothermometer/oxygen barometer is developed. The method is based upon recently calibrated models for spinel solid solutions in the quinary system (Fe2+, Mg)(Al,Fe3+,Cr)2O4−(Fe2+, Mg)2TiO4 by Sack and Ghiorso, and rhombohedral oxides in the quaternary system (Fe2+,Mg,Mn)TiO3−Fe2O3 (this paper). The formulation is internally consistent with thermodynamic models for (Fe2+,Mg)-olivine and -orthopyroxene solid solutions and end-member thermodynamic properties tabulated by Berman. The constituent expressions account for compositional and temperature dependent cation ordering and reproduce miscibility gap features in all of the component binaries. The calibration does not account for the excess Gibbs energy resulting from compositional and temperature dependent magnetic ordering in either phase. This limits application of the method to assemblages that equilibrated at temperatures above 600° C. Practical implementation of the proposed geothermometer/oxygen barometer requires minimal use of projection algorthms in accommodating compositions of naturally occurring phases. The new formulation is applied to the estimation of temperature and oxygen fugacity in a wide variety of intermediate to silicic volcanic rocks. In combination with previous work on olivine and orthopyroxene thermodynamics, equilibration pressures are computed for a subset of these volcanics that contain the assemblage quartz, oxides and either ferromagnesian silicate. The calculated log10 f O 2-T relations are reflected in coexisting ferromagnesian mineral assemblages. Volcanics with the lowest relative oxygen fugacity (Δlog10 f O 2) are characterized by the assemblage olivine-quartz, those with slightly higher Δ log10 f O 2 s, by the assemblage orthopyroxene-quartz. The sequence proceeds with the necessary phases biotite-feldspar, then hornblende-quartz-clinopyroxene, and finally at the highest Δ log10 f O 2 s, sphene-quartz-clinopyroxene. Quantitative analysis of these trends, utilizing thermodynamic data for the constituent phases, establishes that, in most cases, the T-log10 f O 2value computed from the oxides is consistent with the compositions of coexisting silicate phases, indicating that phenocryst equilibrium was achieved prior to eruption. There is, however, considerable evidence of oxide-silicate disequilibrium in samples collected from more slowly cooled domes and obsidians. In addition, T-log10 f O 2trends from volcanic rocks that contain biotite and orthopyroxene are interpreted to imply a condition of Fe2+−Mg exchange disequilibrium between orthopyroxene and coexisting ferromagnesian silicates and melt. It is suspected that many biotite-feldspar-quartz-orthopyroxene bearing low temperature volcanic rocks inherit orthopyroxene xenocrysts which crystallized earlier in the cooling history of the magma body.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Indiana</li>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Ghiorso, S" sort="Ghiorso, S" uniqKey="Ghiorso S" first="S." last="Ghiorso">S. Ghiorso</name>
</region>
<name sortKey="Sack, O" sort="Sack, O" uniqKey="Sack O" first="O." last="Sack">O. Sack</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003547 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003547 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:65A65FF152F850B17F9105E0E71D123001E0A6B8
   |texte=   Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024